
Format String Dangers

Shachar Shemesh
Security Consultant
http://www.shemesh.biz

Schedule
Reintroduction to printf (as if you don’t

already know…).
Some reflection about common uses of

printf.
Dangers of letting attackers supply

format strings.
Step by step demonstration of exploit.

Printf manual

PRINTF(3) Linux Programmer's Manual PRINTF(3)

NAME
 printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf,
 vsnprintf - formatted output conversion

SYNOPSIS
 #include <stdio.h>

 int printf(const char *format, ...);
 int fprintf(FILE *stream, const char *format, ...);
 int sprintf(char *str, const char *format, ...);
 int snprintf(char *str, size_t size, const char *format, ...);

The Format String

Most characters are simply echoed.
A “%” indicates a special field (unless

followed by another “%”).
 It is up to the programmer to make sure

the parameters number and type match
the format string.
 Some compilers will verify this for static

format strings.

Format String Functions

 (v)printf
 (v)sprintf
 (v)snprintf
 (v)fprintf
syslog

 (v)wprintf
 (v)fwprintf
 (v)swprintf
 (v)dprintf
 (v)asprintf

Caveat Emptor

sysinfo hasn’t got the telltale “printf” word
in it.
 It is all too easy to mistake it for accepting a

plain string.
Accepting a format string is all too

common with error functions.
 An error is usually a situation triggerable by

an attacker.
Projects usually have similar, private,

functions.

How Format Strings Work
printf("Hello %s, it’s been %d days since your last login\n",

username, days);

days

format string ptr
printf return addr.

days
username

username

Hello sun, it’s been 25 since your last login

frame pointer
return address

When Format String and
Parameters Mismatch

format string ptr
printf return addr.

%x%x%x%x%x%x
%x%x%x%x%x%x

printf(buffer);
What if “buffer” is “%x%x%x%x%x%x%x%x”?

When the pointer is here
the attacker controls both

parameter and interpretation

What Can be Done?

Query parameters from the stack
 %x, %d etc.

Query data from anywhere in the
program
 %s when the pointer is inside the buffer to

get info from anywhere.
 Passwords, private keys.....

Crash the program
 %s from non-readable memory.
 %f wich requires to devide by zero.

“Walk Ratio”

The ratio between the pointer advance
and the characters it take.

Determines how far up from our buffer
we can peek.
 %x gives 1:2
 %f gives 1:4, but risks devide by zero.
 what does “printf("%3$d %2$d %1$d",5,6,7);”

print?

A user supply format
string gives the

attacker a read only
debugger access into

the application!

Who said it was read only?

%n – The Little Option
Noobody Knows
%n writes into the int pointed to by the

respective argument the number of
characters printed so far.

An attacker can choose to write (%n),
where to write (supply a pointer).

By playing with field length, can also
control what to write.

Bare shortcuts, that may require printing
an average of 2GB of data.

Some of the Shortcuts

Write four times to addresses increasing
by 1 each time.
 Will only work on platform that don’t enforce

integral boundries (e.g. - Intel).
Use %hn to write to short.

 Now only requires printing 64K.
Use %hhn to write to byte.

 Only prints 256 bytes.

A Few Bad Habits
or – you won’t believe what people do!

The following code samples represent
errors found (not necessarily by me) in
shipping code (some commercial, some
free).

The exact code was modified to protect
paying customers the innocent.

A Few Bad Habits

#define ASSERT(cond, err) \
if(!(cond)) { \
printf(err); exit(100); }

ASSERT(progress>10,
“Couldn’t pass 10% mark”);

What will the following imagenary code do?

Pointless use
/* Initialize title */
sprintf(title, “About to copy files”);
 ‘sprintf’ scans the format string for fields.

 Unofficial benchmark shows 50%
performance of ‘sprintf(buff, data)’ over
‘sprintf(buff, “%s”, data)’.

Using ‘strcpy’ or ‘strncpy’ would be much
better in this case.

Dangerous Pitfall
int logerr(char *fmt, ...)
{

va_list args;
char buff[1024];

va_start(args, fmt);
vsnprintf(buff, sizeof(buff), fmt,

args);
va_end(args);

return fprintf(errlog, buff);
}

Famous Example
#include <stdio.h>

main()
{

printf(“Hello, world\n”);
}

printf(“%s”,
“Hello, world\n”);

}

“The C Programming Language”, Second Edition
Brian W. Kernighan
Dennis M. Ritchie
Prentice Hall Software Series, 1988

