
Code (in)Security

Where do code vulnerabilities 
come from.

Shachar Shemesh
http://www.shemesh.biz



What's on the Plan
 General background on the security arena.
 Introduce coding practices that often lead to 

vulnerabilities.
 More details on Buffer Overruns.
 Format strings will be discussed another time.
 Step by step demonstration of exploit code – 

next time.
 Show how these vulnerabilities are exploited.



A Few Terms
 Vulnerability - a software bug that enables an 

attacker to gain undesired capabilities.
 Exploit - the steps required to gain the 

undesired capabilities from the vulnerability.
 Arbitrary code execution - the highest form of 

exploit, allowing an attacker to inject arbitrary 
code into the vulnerable program, and have 
that code executed.



A Few More Terms
 Denial of Service (DoS) - an attack that only 

allows the attacker to inhibit a service, without 
gaining anything else.

 "Owning" a machine - achieving the same (or 
higher) level of control over an attacked 
machine as the legitimate administrator of the 
machine.

 Root kit - a set of files and utilities the 
attacker leaves on the cracked machine, to 
allow easy re-entry, or to collect information 
not otherwise immediately available.



The People
 Hacker - A person with curiosity for making 

things work outside their intended envelope.
 Cracker - A person who exploits 

vulnerabilities in order to gain unauthorized 
capabilities.

 Script Kiddy - A cracker who does not 
understand, and often is also not interested, 
in the mechanics behind the attack tools he/
she uses. These people use tools made by 
others in order to attack machines.



Types of Attacks
 Worms and viruses - the attack is performed 

by an automatic utility, usually not aware of 
who it is attacking.

 Sweep attacks - the attacker (usually a script 
kiddy) is interested in owning as many as 
possible.

 Targeted attacks - an attacker targets a 
specific entity, due to principal, political or 
financial reasons.



Most attacks
today are done

by insiders



Types of Vulnerabilities

It is close to impossible to list 
them all.



Buffer Overruns
 Two major types.

 Stack overruns.
 Heap overruns.

 It is almost impossible to write a C program 
that does not have one.
 BIND, sendmail, Windows NT Kernel, tcpdump, 

etc.
 Arbitrary code execution is relatively easy, 

and becoming easier as new techniques are 
found.
 Recently - also for heap overruns.



Format Strings
 Stems from passing untrusted buffer as 

the format string for "printf" like 
functions.

 Easy to find during an audit, easy to fix.
 Easy to find in the binary, easy to exploit.

 A format string vulnerability that echoes 
the result to the attacker is like giving the 
attacker a debugger into the application.

 Arbitrary code execution exploitation is 
relatively easy.



Incorrect Error Handling
 Not checking a function's return code is not 

always harmless.
 DoS as a result of a disk full, or no memory free.
 WinNuke – A TCP connection to SMB with OOB 

data would cause BSOD.
 Sometimes this can lead to more serious 

problems.
 ICQ long password login problem

 Sometimes it can even lead to arbitrary code 
execution.
 Double free in zlib and many others.



Lack of Input Validation
 Most common among Web applications.
 This can often lead to serious breaches 

in the security model.
 XSS
 Allowing arbitrary queries into the backend 

database.



Rogue Messages (Win32)
 Interactive services – receive messages 

from unprivileged processes.
All of those messages affect the 

execution flow.
Some of those messages copy buffers 

from unprivileged to privileged space.
Some of those messages (WM_TIMER) 

contain pointers that are immediately 
executed.



Race Conditions
 Temporary file creation.

 Most common case - creating a temporary file in 
a location both known, and with access, to an 
attacker.

 Allows bypassing of the security model, changing 
internal program data structures and, in some 
cases, arbitrary code execution.

 Network related races
 ARP poisoning.
 DNS poisoning.



Evolution of a Security Exploit

1)Someone finds a bug.
2)Someone (usually same someone) 

writes a PoC exploit.
3)Someone standardizes the exploit.
4)Script kiddies can now use the exploit to 

break in.
5)A worm can be written to automatically 

exploit.



But They Don't Have the 
Source…
One person talented enough to find the 

bug is enough.
The "Copy Protection" wars of the 80's 

show that no program is above reverse 
engineering.

CSS, GSM, RC4, Word passwords, 
SecureID.



Window of Exposure
A graph describing how likely for a 

given machine to be cracked using a 
given vulnerability.

 Increases slowly the more time the 
vulnerability is there.

 Increases quickly the more time passes 
from the publication.

Decreases once a patch is available.
Greatly decreases once a worm is 

released for that vulnerability.



Full Disclosure
 In the (distant) past, people who found 

vulnerabilities reported them discretely to the 
vendors.
 No fixes at all, or not in a timely manner.
 The "Black Hat" community still knew of problems.
 Problems were never patched.

 The “Full Disclosure” movement.
 Vulnerabilities are reported, but then disclosed to 

the public.
 The negative PR usually forces the vendor to 

patch.
 Master key vulnerability – modern example.



What to Do?
Write bug-free code .
Fix problems as soon as possible.
Create easy to install reliable patches.
Never threaten the revealer of the 

information with legal actions.
 It is amazing how many companies fail this 

simple advice.
 Doesn’t work, but creates a backlash.



What Else to Do?
Security audits.
Code audits.
Design reviews.
Code comments.
Code reuse.
Careful design.
Error handling.
All the other things we all know and 

never do.



End of Part I


