
Buffer Overruns Explained

Shachar Shemesh
Security Consultant
http://www.shemesh.biz/

What are They?
Any time an attacker can write more

data than the buffer can hold.
Two major types:

 Stack overrun
 Heap overrun

Stack Overruns
The oldest trick in the book.
Exploitation is almost a game of trivially

applying a well known technique.
The single most exploited vulnerability.

 The first worm, called the “Morris Worm”,
used a stack overrun in “Sendmail” – 1988.

Heap Overruns
Considered dangerous for ages.

 One would have to “get lucky” with a
convenient pointer.

Only mid 2002 – cookie-cut exploitation
method.

Related cousin – double free errors.

Stack Overruns – How it
Works
A few things to understand:
The stack usually grows downwards.
The stack frame in “C” – arguments,

return address, base pointer, automatic
vars.

Non of this practically matters –
exploitation is usually possible even if
the above is wrong.

Stack Overrun – Arbitrary
Code Execution HOWTO

main()
{
 char buffer[250];

 gets(buffer);
 printf(buffer);
 printf(“\n”);
}

The Stack
“main” return address

frame pointer

“buffer”

“buffer” pointer
“gets” return address

frame pointer

Buffer fills up
Data here is called “egg”

Overwriting the frame
pointer and return address

pointer to egg

Analysis
When “main” tries to return, the

execution will flow into the buffer.
The egg has to be relocateable code.
The egg has to avoid certain characters.

 In “gets” case – newline.
 Avoiding any single character is no

problem.
 There is work (nearly complete) on

printable only egg for i386.

Upward Growing Stack

main()
{
 char buffer[250];

 gets(buffer);
 printf(buffer);
 printf(“\n”);
}

The Stack

“main” return address
frame pointer

“buffer”

“buffer” pointer
“gets” return address

frame pointer

Buffer fills up

Overwriting the frame
pointer and return addresspointer to egg

Heap Overruns – Until 2002
Analyze the heap – search for

convenient pointers.
Exploit code highly dependant on exact

program state.
Even so – extremely dangerous to

assume any given buffer overrun is
safe.

Heap Overruns – 2002 Edition
The head is allocated in one contiguous

block.
Management of the individual allocation

blocks is done with a data structure.
 Usually a balanced or a 2/3 tree.
 The pointers for that data structure are

maintained in the same area as the heap.
Writing past the end of a buffer change

this structure.

Heap Overruns – cont.
When an application frees memory free

heap sections are merged.
As a result, an attacker can cause

arbitrary values to be written to arbitrary
locations!

The road from here to arbitrary code
execution is not long (demo next week).

Known Dangerous Functions
 sprintf

 Field length specifiers can prevent the problem.
 Use the alternative snprintf.

 Occasionally – scanf and fscanf
 Again – limit each field’s length.

 The str* functions – strcat, strcpy
 Use strncat and strncpy instead.

 Watch out for the usage!

 gets
 Your own loops.

Examples of Dangerous
Usage: scanf and fscanf

int main(int argc, char *argv[])
{

char buffer[250];

scanf(“%s”, buffer);
printf(“%s\n”, buffer);

return 0;
}

scanf and fscanf
vulnerabilities (cont.)
There is no difference, in principle,

between the previous example, and the
one using gets.

The egg needs to avoid the space and
newline characters, but writing such
eggs is an everyday practice for an
experienced cracker.

Changing the scanf line to read ‘scanf
(“%250s”, buffer);’ would have
solved the problem.

sprintf vulnerabilities
Assuming that the following is a set-UID

program:
int main(int argc, char *argv[])
{

char buffer[250];

sprintf(buffer, “Usage: %s <name>\n”, argv[0]);
printf(buffer);

...
}

sprintf vulnerabilities
 In the previous example, argv[0] is used

to quote the program’s name.
 argv[0] is actually supplied as a parameter

to the kernel function “execve”. There is no
limit to it’s length.

sprintf buffer-overrun vulnerabilities
usually stem from two sources:
 Formatting user supplied arguments, or

environment variables (registry).
 incorrect calculation of total buffer length

when combining buffers.

str* functions

int main(int argc, char *argv[])
{

char buffer[250];

strcpy(buffer, argv[1]);
printf(“%s\n”, buffer);

return 0;
}

str* functions (cont.)
No need to explain why this is

dangerous.
Most str* functions have a

corresponding strn* functions (i.e. –
strncpy instead of strcpy).

Notice, however, that the strn* functions
have very confusing interface!!

The “gets” Function

int main(int argc, char *argv[])
{

char buffer[250];

gets(buffer);
printf(“%s\n”, buffer);

return 0;
}

The “gets” Function (cont.)
Always gets its data from an external

source (stdin), which is rarely secure.
Has no facility to check the buffer’s

length.
 Is so dangerous, many modern linkers

issue a warning if it is referenced.
 On *BSD systems – runtime warning.

Use “fgets(buffer, buff_size,
stdin);” for identical results with
boundaries checking.

Your Own Loops

int main(int argc, char *argv[])
{

char buffer[250];
int i,c;
for(i=0; (c=getchar())!=EOF && c!=‘\n’ && i<250; ++i)

buffer[i]=c;

buffer[i]=‘\0’;
printf(“%s\n”, buffer);

return 0;
}

What’s wrong with this program?

Your Own Loops (cont.)
 If the input length is 250 characters or more,

a single byte after the end of the buffer is
overwritten with NULL.

 With an upward growing stack, and a little
endian machine (such as Intel), this means
overwriting the LSB of the pointer right after
the buffer with zero.

 With the buffer size occupying most (but not
all) of the previous 256 block, there is a very
high probability that the new pointer points
back into the buffer.

 There is a good chance that this bug is
exploitable!

Cast screwups
void func(char *dnslabel)
{
 char buffer[256];
 char *indx = dnslabel;
 int count;

 count = *indx;
 buffer[0] = '\x00';

 while (count != 0 && (count + strlen (buffer)) < sizeof (buffer) - 1)
 {
 strncat (buffer, indx, count);
 indx += count;
 count = *indx;
 }
}

First byte at *dnslabel is 0x80 = -128

Gets expanded to 0xFFFFF80

signed comparison passes

almost arbitrary length string is appended

Further Reading
The extra material is for anyone who is

interested in deeper understanding of
exploiting buffer overruns

 Smashing the stack for fun and profit –
http://www.phrack.org/show.php?p=49&a=14

 Exploiting heap overruns –
http://www.phrack.org/show.php?p=57&a=9

Next Meeting (in two weeks)
Explanation of format strings

exploitation methods.
Live demonstration of “from scratch”

development of a simple exploit code.
 Stack overrun.
 Format string.

Available Online
This presentation (as well as others soon

to follow) is available in an all-browser
digestible form at
http://www.shemesh.biz/lectures

Questions Time

